Immunoresponse to Allogeneic Synovial or Xenogenic Mesenchymal Stromal Cells in a Co-Culture Model

نویسندگان

  • Seth S. Jump
  • David S. Smith
  • David C. Flanigan
  • Alicia L. Bertone
چکیده

The purpose of our investigations was to measure, in a co-culture condition, the immunoresponse to allogeneic or xenogenic cells, selected as potential sources for cell therapy of arthritis. We challenged human spleen-derived cells (hSpl) by three different mechanisms: 1) exposure to donor allogeneic or xenogeneic cellular antigens; 2) exposure to donor cells transduced with adenoviral antigens (Ad) and 3) lipopolysaccharide (LPS), a known inflammatory immunostimulant. The immunoresponse to allogeneic human synovial-derived mesenchymal stromal cells alone or transduced with adenoviral green fluorescent protein (hSD-MSC or hSD-MSC/GFP) or the immunoresponse to xenogeneic equine mesenchymal stromal cells (eqMSC) or equine dermal fibroblasts (eqDFb), characterized by the proportion of CD3, CD4, and CD8 human splenocytes (hSpl), was measured on Day 0 and Day 6 of co-culture by flow cytometry. In culture with hSD-MSC, hSD-MSC/GFP, eqDFb, or eqMSC, the proportion of CD3 and CD8 hSpl increased with time in culture but not with exposure to cell alloor xeno-antigens. Both hSD-MSC and hSD-MSC/GFP increased in number during culture and were not affected in viability or proliferation by co-culture with allogeneic hSpl. In this in vitro, primary exposure study, hSpl demonstrated a natural selection and adaptation to a short-term cell culture environment, and that neither allogeneic nor xenogeneic cell antigens incited a greater cellular immunoactivation than co-cultured hSpl alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of bone marrow-derived mesenchymal stem cells to induce PD-L1 molecule on splenic lymphocytes

Background: Mesenchymal stem cells are non-hematopoietic stromal cells that are used in the treatment of many chronic and autoimmune diseases by modulating the immune system. Due to the limitations of using autologous mesenchymal stem cells, the use of allogeneic stem cells is a promising therapeutic approach in the treatment of immunological disorders. This study aimed to investigate the abili...

متن کامل

Mesenchymal Stem Cells Do Not Suppress Lymphoblastic Leukemic Cell Line Proliferation

Background: Several studies have demonstrated the immunosuppresive effects of mes-enchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this re-gard. Objective: To investigate if adipose derived MSCs could inhibit Jurkat lym-phoblastic leukemia T cell proliferation during coculture. Me...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34(+) hematopoi...

متن کامل

In vivo effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury

Objective(s): Renal ischemia-reperfusion injury (IRI) as a severe condition of acute kidney injury (AKI) is the most common clinical problem with high mortality rates of 35-60% deaths in hospital. Mesenchymal stem cells (MSC) due to unique regenerative characteristics are ideal candidates for the treatment of the ischemic injuries. This work is focused on the administration of MSC to IRI-induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012